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Abstract
We investigate how temperature affects the dependence of the average magnetic
moments μ̄ of clusters on their size and how the magnetic moment profile of an
individual cluster varies with temperature T . The focus is on free spherical Fe
clusters of 9–89 atoms. The interaction among individual magnetic moments is
described by a classical Heisenberg spin Hamiltonian, with exchange coupling
constants provided by ab initio calculations. Average magnetic moments μ̄ for
finite T were obtained via Monte Carlo simulations. We found that the exchange
coupling depends on the cluster size and on the position of the atom in the
cluster in a complex way, with no obvious systematics. The magnetic moment
profile of an individual cluster becomes more uniform if T increases. The
dependence of μ̄ on the cluster size, in practice, does not depend on temperature
if T is in the range of 0–300 K. Ground-state calculations for T = 0 K should
thus be able to describe experiments based on the deflection of a molecular beam
in a magnet for T �= 0 K.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Free clusters of a few tens to hundreds of atoms form an interesting class of materials, both
from fundamental and applications points of view. They contain a large portion of surface
atoms, yet their properties cannot be obtained as a simple interpolation between the surface and
the bulk. Magnetic moments of free clusters can be determined experimentally by measuring
the deflection of a molecular beam in a Stern–Gerlach magnet [1]. By applying this technique,
it was found that the magnetic moment per atom μ̄ is larger in clusters than in the bulk and that
it varies non-monotonously with the cluster size. Much theoretical research has recently been
done on free clusters of transition metals. The calculations indeed provided non-monotonous
dependence of μ̄ on the cluster size (and also non-monotonous magnetic moment profiles for
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individual particles). However, the calculated positions of minima and maxima of μ̄ as a
function of the number of atoms N in the cluster do not always agree with the experiment.
One of the reasons for the disagreement could be that the experiments are done for clusters
thermalized at temperatures T ≈ 70–300 K while the calculations are done for T = 0 K.

In this paper, we focus on free Fe clusters of 9–89 atoms and investigate quantitatively
how the dependence of μ̄ on N varies with T . In particular, we check whether the positions
of minima and maxima of μ̄(N) depend on T and whether calculations for T = 0 K
can be realistically expected to reproduce experiments performed at finite temperatures. We
also study how the magnetic moment profile of an individual cluster changes if temperature
is raised. Knowing this information will facilitate further interaction between theoretical
and experimental research in this area and provide a deeper insight into finite-temperature
magnetism of spatially confined systems.

Magnetism of free Fe clusters was studied both by theoretical and experimental methods
in the past. Billas et al [1] measured average magnetic moments μ̄ of free Fe clusters of 25–700
atoms at T = 120 K. On the other hand, practically all theoretical work on magnetism of free
Fe clusters was done for T = 0 K. Calculations relying on a model tight-binding Hamiltonian
cover ranges of up to 230 atoms [2–5]. Ab initio calculations were performed either using the
pseudopotential scheme [6, 7] or within the multiple-scattering formalism [8] and cover sizes
up to 400 atoms. In most calculations, bulk interatomic distances were assumed [3, 5, 8, 7]; in
some cases, relaxation of interatomic distances was allowed [2, 4, 6]. A general trend was found
that the local magnetic moments μi increase in a quasi-oscillatory way when going from the
center of the cluster outwards. Usually, only the spin magnetic moment μspin was calculated.
The orbital magnetic moment μorb of Fe clusters was calculated only in a fully relativistic study
of Šipr et al [8] and in the work of Tiago et al [7], where spin–orbit interaction was included in
a variational step. Although the calculations reproduce some trends of the μ̄(N) dependence,
none of the theoretical studies achieves a full agreement with experiment.

As concerns the studies of finite-temperature magnetism of clusters, most of them relied
on the Heisenberg Hamiltonian with interaction parameters taken from the corresponding bulk
[9–12]. Only recently, finite-temperature effects were described via a Heisenberg Hamiltonian
with ab initio cluster-specific coupling parameters [13]. It was found that the crossover-
temperature Tc depends on the cluster size non-monotonously. Calculations of Polesya et al
[13] confirmed earlier findings [10–12] that magnetic moments at the cluster surface generally
decay faster with increasing T than magnetic moments in the interior but they also found that
this trend may be reversed for some distances from the center.

Finite-temperature magnetism of clusters was studied also by approaches that do not
rely on the Heisenberg Hamiltonian. López-Urı́as et al [14] investigated magnetism of small
clusters (N � 6) at T �= 0 K within a single-band Hubbard model and found that for some
values of the model parameters, clusters may exhibit an increase of μ̄ with increasing T
at low temperatures. Pastor et al [15] studied local spin-fluctuation energies for Fe and Ni
clusters (N � 51) within the functional-integral theory and found that spin-flip energies depend
strongly on the size of the cluster and on the atomic site. Andriotis et al [16, 17] studied Ni
clusters (N � 201) by combining the classical potential approximation with the tight-binding
molecular-dynamics method. The temperature dependence of μ̄ of Ni clusters obtained by
Andriotis et al [16] displays a similar pattern as μ̄ of Fe clusters [13]. However, the crossover-
temperature Tc was found to increase monotonously with the cluster size for Ni clusters [17],
which is in contrast with the non-monotonous dependence found for Fe clusters by a different
method [13].

In this work we will show that the dependence of average magnetic moments per atom μ̄ of
Fe clusters on their size does not change significantly if the temperature is raised from T = 0 K

2



J. Phys.: Condens. Matter 19 (2007) 446205 O Šipr et al

up to room temperature. For higher temperatures, μ̄ of large clusters decays more quickly with
increasing T than μ̄ of small clusters. At the same time, increasing T makes magnetic moment
profiles of individual clusters more uniform. We will also show that the total coupling of the
magnetic moment of a particular atom is a complicated function of the distance of the atom
from the center and of the cluster size, with no obvious systematics.

2. Computational scheme

We investigated free spherical Fe clusters constructed from 1–7 coordination shells of bcc iron
(9–89 atoms), without geometry relaxation. The energetics connected with the deviation of
spins from a ferromagnetic order was described by a classical Heisenberg spin Hamiltonian,

Heff = −
∑

i �= j

Ji jei · e j , (1)

where Ji j is the exchange coupling constant between atoms i and j and ei , e j are unit
vectors pointing in the directions of the corresponding local magnetic moments. The exchange
coupling constants Ji j were obtained from ab initio scalar-relativistic calculations of the
ground-state electronic structure, via the formula of Liechtenstein et al [18]

Ji j = − 1

4π
Im

∫ EF

dE Tr(t−1
i↑ − t−1

i↓ )τ
i j
↑ (t−1

j↑ − t−1
j↓ )τ

j i
↓ . (2)

The above formula (for details see [18]) was derived by exploiting the multiple-scattering
formalism, linear response theory, the spin-polarized local force theorem, and the long-
wave approximation. The ground-state electronic structure was calculated within the
multiple-scattering formalism, relying on the atomic sphere approximation (ASA) and on the
parametrization of Vosko, Wilk, and Nusair for the exchange–correlation potential [19], using
the SPRKKR code [20, 21]. A detailed description of our ground-state calculations can be found
elsewhere [8, 22].

The average magnetic moment μ̄ was calculated as the expectation value of the magnitude
of the total magnetic moment of the cluster (per atom),

μ̄ = 1

N

〈∣∣∣∣
N∑

i=1

μiei

∣∣∣∣
〉
, (3)

where μi is the (zero-temperature) magnetic moment at site i . Generally, the expectation value
of any observable A which is a function of spin directions, A({ei}), can be written for a given
T as

〈A〉 = Tr exp(−Heff/kT )A

Tr exp(−Heff/kT )
. (4)

We evaluated the sum in (4) by a Monte Carlo (MC) method [23] using the standard Metropolis
importance sampling algorithm [24]. The Ji j values obtained from (2) were taken as input
parameters. The simulation started from a collinear orientation of all local moments at low
temperature (0.5 K) and each step consisted of a random rotation of one spin. For each
next temperature, the last spin configuration obtained for the previous temperature was used
as the starting configuration. The total number of MC steps per atom was 107–108 for each
temperature. The first 106 or 2×106 steps were used for equilibration and the rest for obtaining
the averages of physical quantities.

The moment μ̄ defined by (3) concerns the whole cluster. Earlier studies carried out for
T = 0 K found that the local magnetic moments increase in a quasi-oscillatory way when
going from the cluster center towards its surface [2, 8]. In order to investigate the temperature
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dependence of the magnetic moment profile of individual clusters, one has to determine the
mean magnetic moment μ

( j)
s related to a given shell. We define it as the expectation value

of the projection of the magnetic moments of all atoms forming the shell (per atom) onto the
direction of the magnetic moment of the whole cluster,

μ( j)
s = 1

N ( j)

〈N ( j )∑

k=1

μkek ·
∑N

i=1 μiei

| ∑N
i=1 μiei |

〉
, (5)

where k spans all N ( j) sites belonging to the j th shell. This definition is analogous to, for
example, the ‘local intrinsic magnetization’ as defined in [12].

The Ji j constants characterize the coupling between spins of atoms i and j . In order to
quantify the strength by which a spin of atom i is held in its direction by interacting with all
the other atoms, we define the total coupling J (i),

J (i) ≡
N∑

j �=i

Ji j . (6)

In a crystal, this quantity would be just the effective exchange interaction constant J (0) which
is connected, in the mean-field approximation, to the Curie temperature TC via

J (0) = 3
2 kBTC. (7)

In a loose way, one could see J (i) as a measure of the ‘local Curie temperature’ in a cluster
(obviously, the true Curie temperature is not a local quantity and, moreover, phase transitions
do not occur in finite systems).

For both free and supported clusters, it turned out to be useful to investigate the dependence
of site-related magnetic properties on coordination numbers [8, 25, 26]. The influence of the
nearest as well as the next-nearest neighbors can be incorporated into the effective coordination
number neff defined as [27]

neff = n1 + βn2, (8)

where n1 is the number of nearest neighbors and n2 is the number of next-nearest neighbors.
The coefficient β = 0.25 is determined by the distance dependence of the d electron hopping
integrals [27, 28].

3. Results

Figure 1 shows the calculated average magnetic moments μ̄ of clusters (see equation (3)), as
a function of the number of atoms in the N-atom cluster, for several temperatures T . One
can see that μ̄ for T �= 0 K joins smoothly the zero-temperature results, thus confirming that
our computational scheme is internally consistent. There is an overall decrease of μ̄ with
increasing T for all cluster sizes, in accordance with our earlier results [13]. As concerns the
dependence of μ̄ on N , significant deviations from the T = 0 K situation appear only above
room temperature. For large clusters, μ̄ drops with increasing T more quickly than for small
clusters. For comparison, the experimental results for T = 120 K [1] are also shown in figure 1.
Note that the experimental data contain errors (especially for low N); we do not show the error
bars here so that the plot remains legible.

The magnetic moment profile of an 89-atom cluster evaluated according to (5) is shown in
figure 2 for several temperatures. Again, significant differences with respect to the T = 0 K
case appear only above room temperature. Generally, increasing T makes the magnetic moment
profile flatter—the differences between local minima and maxima of μ

( j)
s get smaller if T gets

higher.
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Figure 1. Average magnetic moments μ̄ defined by (3) shown as function of the cluster size, for
various temperatures (specified at the right edge of the graph). Experimental data of Billas et al [1]
for T = 120 K are shown as well.

Figure 2. Dependence of the magnetic moments μ
( j)
s assigned to individual shells of an 89-atom

cluster on the distance of the shell from the center, for several temperatures (shown at the right edge
of the graph).

Let us turn now to the exchange coupling constants. The site-related total coupling of
spins J (i) evaluated according to (6) is shown in figure 3 for selected clusters. For comparison,
the coupling parameter J (0) for an Fe crystal is also shown. One can see immediately that the
coupling depends both on the size of the cluster and on the position of the atom within the
cluster and that this dependence is quite complex. The same is true also for other cluster sizes
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Figure 3. Total coupling J (i) of spins in clusters of 15, 51, and 89 atoms. The coupling constant
J (0) for an Fe crystal is represented by the thick horizontal line.

Figure 4. Dependence of the total coupling J (i) on the effective coordination number of the
atom i . For each cluster size, data points are shown by different markers, as indicated in the
legend.

(not shown in the plot for the sake of clarity). Interestingly, flipping the spins in the outer shells
is not always easier than flipping the spins in the interior shells; for example, for the 15-atom
cluster, the trend is just the opposite.

Figure 4 shows the dependence of the total coupling J (i) of the spin at atom i on the
effective coordination number neff of this atom. The figure contains data points for all the
cluster sizes we investigated and, for comparison, for an Fe crystal as well. One can see that
despite some tendency of J (i) to increase linearly with increasing neff for neff � 8, no simple
trend can be identified in figure 4. The same would be true if we put just the number of nearest
neighbors n1 instead of neff on the horizontal axis (cf the definition (8)).
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4. Discussion

The main issue of this study was to find out whether the dependence of the average magnetic
moment μ̄ on the cluster size will change significantly if the temperature is raised from T = 0 K
(for which most calculations are done) to T ≈ 100 K (for which most experiments are
performed). We found that up to room temperature, μ̄ of free Fe clusters does not depend
significantly on T . This implies that ground-state calculations should be able to reproduce the
currently available experimental data.

The results shown in figure 1 demonstrate that μ̄ decreases with increasing T more quickly
for large clusters than for small clusters. This is in agreement with conclusions based on
inspecting the μ(T ) curves for specific cluster sizes obtained either with uniform coupling
constants [9, 11] or with cluster-specific constants Ji j [13]. However, there are exceptions to
this rule; e.g. μ̄ of the 9-atom cluster decreases with increasing T more quickly than μ̄ of the 15-
atom cluster (in the T ≈ 300–600 K range). A surprising feature of the results shown in figure 1
is that the non-monotonous character of the dependence of μ̄ on N gets more pronounced if the
temperature increases from 0 K to T ≈ 600–800 K (the maxima at 15 and 59 atoms are highest
for T ≈ 800 K).

It follows from the temperature dependence of the magnetic moment profile of the 89-atom
cluster (figure 2) that μ̄ decreases with T more quickly at the cluster surface than in the interior.
This agrees with earlier results obtained for Ji j constants taken from Fe crystal [10–12]. If

proper cluster Ji j constants were used, it was found by inspecting the individual μ( j)
s (T ) curves

that this trend is not uniform (see figure 3 in [13]). Figure 2 illustrates this from yet another
viewpoint: the average magnetic moment of atoms in the second shell (at 5.42 au) is smaller
than the average magnetic moment of atoms in the first shell (at 4.70 au) for T = 0 K while the
situation is reversed for T � 600 K. Another point to mention is that μ

( j)
s at cluster surfaces

never drops to zero—not even for very high T .
A deeper insight into how temperature affects magnetism of clusters could be gained from

site-related coupling constants J (i). One can see from figure 3 that their behavior can hardly
be guessed beforehand; for some clusters, the J (i) coupling parameter is largest in the center,
for some clusters J (i) is largest at the cluster surface, for some clusters J (i) exhibits a non-
monotonous (quasi-oscillatory) behavior. The J (i) coupling parameter in clusters may be larger
as well as smaller than in the bulk. So figure 3 can be seen as yet another demonstration that
for a realistic description of finite-temperature magnetism of clusters, proper cluster-specific
coupling constants have to be used.

The site-related coupling parameter J (i) can be seen as an analog to the low-temperature
limit of the local spin-fluctuation energies �Fi studied for Fe clusters by Pastor et al [15].
Similarly to the case of J (i), it was found that �Fi is a complicated function of the cluster size
and of the position of the site i [15]. Moreover, Pastor et al found by analysing the energies �Fi

that for a 15-atom Fe cluster, the ferromagnetic order is particularly stable at the outermost shell
while for a 51-atom cluster, atoms in the outermost shell show the tendency to spin reversals.
This is in remarkable agreement with the behavior of J (i) shown in figure 3: for a 15-atom
cluster, J (i) attains its maximum in the outermost shell while for a 51-atom cluster, J (i) attains
its minimum in the outermost shell.

The fact that there is only a weak relation between the J (i) constants and neff (see figure 4)
is in contrast to the finding that for supported Co clusters on Pt or Au, the J (i) constants do
depend on the coordination number of Co atoms in a nearly linear manner [26]. One should
realize, however, that this difference might be caused not only by intrinsic differences but also
by different size ranges: the supported Co clusters investigated in [26] contained up to 10 atoms
while the free Fe clusters investigated here contain 9–89 atoms.
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Let us now address how our results are affected by the approximations used. Our study
focuses on clusters with bulk interatomic distances. This is certainly a limitation; real free
Fe clusters will differ from this idealized geometric model. The true cluster geometry is still
a matter of controversy: experimental and theoretical studies published so far do not lead to
convergent conclusions [3, 6, 29–31]. We adopt the bulk bcc geometry as a reasonable first
guess. We expect that our main conclusions about how μ̄ changes with temperature are not
specific to a particular geometry.

The potential we used for describing zero-temperature electronic structure was constructed
using the ASA. We expect that this is not a serious limitation. It was demonstrated that the
ASA is appropriate at metallic surfaces, unless one is interested in states localized above the
surface (as in scanning tunneling microscopy) [32]. Likewise, it was shown recently that ASA
potentials describe spectroscopic properties of free noble metal clusters properly [33].

Our calculation is scalar-relativistic, meaning that the orbital contribution μorb to the
magnetic moment of clusters is ignored. This should not affect the conclusions of this work.
Earlier fully relativistic studies [8] found that, for T = 0 K, the total magnetic moment of
clusters is not very sensitive to the orbital contribution: including μorb just caused a more or
less uniform increase of μ̄ by about 0.05 μB, independently of the cluster size. Likewise,
including μorb does not significantly alter the magnetic moment profile of individual clusters
either (cf figures 1–2 of [8]).

The Hamiltonian (1) does not include the magnetic anisotropy energy (MAE). Earlier
calculations for small supported Co clusters (up to 10 atoms) suggested that the MAE should
not affect the temperature dependence of cluster magnetism significantly [34]. On the other
hand, a study of free 13-atom clusters indicated that surface anisotropy could affect the
temperature dependence of magnetism for low temperatures (provided that it is sufficiently
large) [35]. Calculations relying on a model d-band Hamiltonian suggest that, for our cluster
size range, the MAE is larger than in the bulk and that it crucially depends on the cluster size
and geometry [36]. Recently it was even suggested [37] that variations of the MAE could be
the main cause of the non-monotonous behavior of μ̄ as observed in the experiment of Billas
et al [1]. As a whole, it appears that the influence of the MAE on our results cannot be properly
assessed at this stage.

One should also note that we rely on a classical Hamiltonian (1) to describe magnetic
excitations. Incorporating quantum effects in calculations of finite-temperature magnetic
properties is a demanding task. Recent examples include ab initio dynamical mean-field theory
applied to bulk Fe and Ni [38], the quantum Heisenberg model applied to small rare-earth
clusters [14, 39] or path-integral quantum Monte Carlo applied to light molecules and argon
clusters [40, 41]. The quantum nature of magnetic excitations has to be taken into account in
order to obtain, among others, the correct asymptotics in the low T regime. We do not expect
that our conclusions about the systematics of magnetic moments and of exchange coupling
would change if a quantum Hamiltonian instead of (1) was employed.

Our study implies that zero-temperature calculations of magnetic moments of free Fe
clusters of N � 100 atoms are adequate to be compared with the experimental results, e.g. at
T = 120 K [1]. We assume that the same will be true also for larger clusters and for other
transition metals. In particular, let us recall that measurements of μ̄ of free Mn clusters were
performed for T = 68 K [42], of free Co clusters for T = 78 K [43], of free Ni clusters for
T = 78 K [43] and for T = 73–303 K [44], and of free Rh clusters for T = 93 K [45]. In all
these cases, ground-state calculations should be able—with reasonable accuracy—to reproduce
the measured dependence of μ̄ on the cluster size. The disagreement of current calculations
with experiment, therefore, should not be ascribed to the influence of finite temperature. Rather,
other effects such as structural transformation should be explored. An additional source of the
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discrepancies between the experiment and the calculations may come from the fact that the
experimental values have not been obtained directly but inferred from measured deflections in
a Stern–Gerlach magnet. The magnetic moments can be derived from the experiment only after
several assumptions concerning superparamagnetic behavior, single-domain magnetization,
and spin relaxation have been made [43, 46, 47].

5. Conclusions

The dependence of the average magnetic moments μ̄ of free Fe clusters of 9–89 atoms on the
cluster size for temperatures up to T ≈ 300 K is essentially the same as for T = 0 K; ground-
state calculations should thus, in principle, be able to describe experiments based on deflection
of molecular beams in a Stern–Gerlach magnet. The magnetic moment profile of an individual
particle gets flatter if T increases. The total exchange coupling of the magnetic moment of a
particular atom J (i) depends in a complex manner on the cluster size as well as on the position
of the atom in the cluster, with no obvious systematics.
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[36] Guirado-López R 2001 Phys. Rev. B 63 174420
[37] Xie Y and Blackman J A 2003 J. Phys.: Condens. Matter 15 L615
[38] Liechtenstein A I, Katsnelson M I and Kotliar G 2001 Phys. Rev. Lett. 87 067205
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